Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Clin Pharmacol Toxicol ; 134(5): 574-601, 2024 May.
Article in English | MEDLINE | ID: mdl-38477419

ABSTRACT

Studies have demonstrated the neuroprotective effect of cannabidiol (CBD) and other Cannabis sativa L. derivatives on diseases of the central nervous system caused by their direct or indirect interaction with endocannabinoid system-related receptors and other molecular targets, such as the 5-HT1A receptor, which is a potential pharmacological target of CBD. Interestingly, CBD binding with the 5-HT1A receptor may be suitable for the treatment of epilepsies, parkinsonian syndromes and amyotrophic lateral sclerosis, in which the 5-HT1A serotonergic receptor plays a key role. The aim of this review was to provide an overview of cannabinoid effects on neurological disorders, such as epilepsy, multiple sclerosis and Parkinson's diseases, and discuss their possible mechanism of action, highlighting interactions with molecular targets and the potential neuroprotective effects of phytocannabinoids. CBD has been shown to have significant therapeutic effects on epilepsy and Parkinson's disease, while nabiximols contribute to a reduction in spasticity and are a frequent option for the treatment of multiple sclerosis. Although there are multiple theories on the therapeutic potential of cannabinoids for neurological disorders, substantially greater progress in the search for strong scientific evidence of their pharmacological effectiveness is needed.


Subject(s)
Cannabidiol , Cannabinoids , Epilepsy , Mental Disorders , Multiple Sclerosis , Parkinson Disease , Humans , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Parkinson Disease/drug therapy , Multiple Sclerosis/drug therapy , Receptor, Serotonin, 5-HT1A/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Epilepsy/drug therapy , Mental Disorders/drug therapy , Comorbidity
2.
Brain Res ; 1758: 147292, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33516814

ABSTRACT

Bone marrow mononuclear cells (BMMCs) have been identified as a relevant therapeutic strategy for the treatment of several chronic diseases of the central nervous system. The aim of this work was to evaluate whether intravenous treatment with BMMCs facilitates the reconnection of lesioned cortico-cortical and cortico-striatal pathways, together with motor recovery, in injured adult Wistar rats using an experimental model of unilateral focal neocortical ischaemia. Animals with cerebral cortex ischaemia underwent neural tract tracing for axonal fibre analysis, differential expression analysis of genes involved in apoptosis and neuroplasticity by RT-qPCR, and motor performance assessment by the cylinder test. Quantitative and qualitative analyses of axonal fibres labelled by an anterograde neural tract tracer were performed. Ischaemic animals treated with BMMCs showed a significant increase in axonal sprouting in the ipsilateral neocortex and in the striatum contralateral to the injured cortical areas compared to untreated rodents. In BMMC-treated animals, there was a trend towards upregulation of the Neurotrophin-3 gene compared to the other genes, as well as modulation of apoptosis by BMMCs. On the 56th day after ischaemia, BMMC-treated animals showed significant improvement in motor performance compared to untreated rats. These results suggest that in the acute phase of ischaemia, Neurotrophin-3 is upregulated in response to the lesion itself. In the long run, therapy with BMMCs causes axonal sprouting, reconnection of damaged neuronal circuitry and a significant increase in motor performance.


Subject(s)
Bone Marrow Transplantation/methods , Brain Ischemia/pathology , Leukocytes, Mononuclear/transplantation , Nerve Regeneration/physiology , Neurotrophin 3/biosynthesis , Recovery of Function/physiology , Animals , Axons/physiology , Male , Motor Activity/physiology , Neocortex , Rats , Rats, Wistar , Up-Regulation
3.
Psychopharmacology (Berl) ; 237(4): 1063-1079, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31919563

ABSTRACT

RATIONALE: The behavioural effects elicited by chemical constituents of Cannabis sativa, such as cannabidiol (CBD), on the ventromedial hypothalamus (VMH) are not well understood. There is evidence that VMH neurons play a relevant role in the modulation of unconditioned fear-related defensive behavioural reactions displayed by laboratory animals. OBJECTIVES: This study was designed to explore the specific pattern of distribution of the CB1 receptors in the VMH and to investigate the role played by this cannabinoid receptor in the effect of CBD on the control of defensive behaviours and unconditioned fear-induced antinociception. METHODS: A panic attack-like state was triggered in Wistar rats by intra-VMH microinjections of N-methyl-D-aspartate (NMDA). One of three different doses of CBD was microinjected into the VMH prior to local administration of NMDA. In addition, the most effective dose of CBD was used after pre-treatment with the CB1 receptor selective antagonist AM251, followed by NMDA microinjections in the VMH. RESULTS: The morphological procedures demonstrated distribution of labelled CB1 receptors on neuronal perikarya situated in dorsomedial, central and ventrolateral divisions of the VMH. The neuropharmacological approaches showed that both panic attack-like behaviours and unconditioned fear-induced antinociception decreased after intra-hypothalamic microinjections of CBD at the highest dose (100 nmol). These effects, however, were blocked by the administration of the CB1 receptor antagonist AM251 (100 pmol) in the VMH. CONCLUSION: These findings suggest that CBD causes panicolytic-like effects and reduces unconditioned fear-induced antinociception when administered in the VMH, and these effects are mediated by the CB1 receptor-endocannabinoid signalling mechanism in VMH.


Subject(s)
Cannabidiol/toxicity , Fear/physiology , Pain Measurement/methods , Panic Disorder/metabolism , Receptor, Cannabinoid, CB1/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Cannabidiol/administration & dosage , Fear/drug effects , Fear/psychology , Injections, Intraventricular , Male , N-Methylaspartate/administration & dosage , Pain Measurement/drug effects , Pain Measurement/psychology , Panic Disorder/chemically induced , Piperidines/administration & dosage , Pyrazoles/administration & dosage , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Ventromedial Hypothalamic Nucleus/drug effects
4.
Psychopharmacology (Berl) ; 230(4): 579-88, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23846543

ABSTRACT

RATIONALE: Both typical and atypical antipsychotic drugs are D2 receptor antagonists but yet appear to have markedly different effects upon the induction of dopamine sensitization. OBJECTIVE: This study aims to compare the effects of subchronic regimens of low-dose olanzapine and haloperidol administered to rats previously sensitized to apomorphine. METHODS: Initially, rats received apomorphine (2.0 mg/kg) or vehicle treatments for five consecutive days followed by a conditioning test and an apomorphine challenge test. Next, there was an antipsychotic exposure phase in which three vehicle groups and three apomorphine groups received 10 daily injections of either vehicle, haloperidol (0.03 mg/kg) or olanzapine (0.01 mg/kg). In the final phase, all groups were given a second conditioning test and apomorphine challenge test. RESULTS: Apomorphine induced sensitization and conditioning effects. Following haloperidol exposure, apomorphine conditioned and sensitization effects were potentiated but, in contrast, olanzapine exposure eliminated apomorphine sensitization effects. In addition, the sensitization induced by apomorphine transformed the low-dose haloperidol treatment into a potent locomotor stimulant treatment. In the vehicle groups, haloperidol and olanzapine exposure effects were equivalent and not different from vehicle treatment. CONCLUSIONS: The profound differences observed between typical and atypical antipsychotic exposure in animals with an upregulated dopamine system are consistent with clinical evidence for lower risk of psychomotor disturbances with chronic treatment with atypical antipsychotic. Importantly, the finding that a very low dose of olanzapine reversed sensitization effects suggests that low-dose olanzapine may have clinical utility in a variety of disorders linked to sensitization of the dopamine system.


Subject(s)
Antipsychotic Agents/pharmacology , Benzodiazepines/pharmacology , Dopamine Antagonists/pharmacology , Haloperidol/pharmacology , Animals , Antipsychotic Agents/administration & dosage , Apomorphine/pharmacology , Benzodiazepines/administration & dosage , Conditioning, Psychological/drug effects , Dopamine/metabolism , Dopamine Antagonists/administration & dosage , Dopamine D2 Receptor Antagonists , Dose-Response Relationship, Drug , Haloperidol/administration & dosage , Male , Olanzapine , Rats , Rats, Wistar
5.
Brain Res ; 1492: 130-9, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23178695

ABSTRACT

Previous studies have shown sensorimotor recovery by treatment with bone marrow mononuclear cells (BMMCs) after focal brain ischemia. However, sensorimotor tests commonly used are designed to examine motor patterns that do not involve skill or training. We evaluated whether BMMCs treatment was able to recover forelimb skilled movements. Reaching chamber/pellet retrieval (RCPR) task was used, in which animals had to learn to grasp a single food pellet and lead it to its mouth. We also evaluated therapeutic effect of this training on unskilled sensorimotor function. Adult male Wistar rats suffered unilateral cortical ischemia by thermocoagulation in motor and somesthetic primary areas. A day later, they received i.v. injection of 3×10(7) BMMCs or vehicle (saline), forming four experimental groups: BMMCs+RCPR; saline+RCPR; BMMCs and saline. Cylinder and adhesive tests were applied in all experimental groups, and all behavioral tests were performed before and along post-ischemic weeks after induction of ischemia. Results from RCPR task showed no significant difference between BMMCs+RCPR and saline+RCPR groups. In cylinder test, BMMCs-treated groups showed significant recovery, but no significant effect of RCPR training was observed. In adhesive test, BMMCs treatment promoted significant recovery. Synergistic effect was found since only together they were able to accelerate recovery. The results showed that BMMCs treatment promoted increased recovery of unsophisticated sensorimotor function, but not of skilled forepaw movements. Thus, BMMCs might not be able to recover all aspects of sensorimotor functions, although further studies are still needed to investigate this treatment in ischemic lesions with different locations and extensions.


Subject(s)
Bone Marrow Transplantation/methods , Brain Ischemia/therapy , Leukocytes, Mononuclear/transplantation , Motor Skills , Recovery of Function , Animals , Disease Models, Animal , Forelimb , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...